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elements in a column of the periodic system have 
properties that remain the same in the whole column, 
e.g. the number of valence electrons, and others that 
evolve along the column, e.g. the boiling point. 
Similarly, we found properties that remained the same 
in a row, e.g. the subgroup structure, and others that 
evolved along a row, e.g. the number of dimensions in 
which spontaneous magnetization or polarization is 
permitted. 
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ments of the present paper. 
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Abstract 

The subgroups of finite index of any n-dimensional 
space group are determined by the solutions of a set of 
congruences analogous in form and meaning to the 
Frobenius congruences which characterize the space 
groups themselves. These congruences can be solved in 
any dimension in which the space groups are known. 

Introduction 

The subgroups of the space groups play a central role 
both in theoretical crystallography and in the 
interpretation of experiment. For this reason, they have 
been studied intensively since Hermann first discussed 
them fifty years ago (Hermann, 1929). Hermann 
singled out two classes of subgroups for special 
attention, those which have the same translation 
subgroup as the original group (translation-equivalent 
subgroups) and those which belong to the same 
geometric crystal class as the original group (class- 
equivalent subgroups). This is justified by Hermann's 
well-known theorem that any subgroup is a class- 
equivalent subgroup of a translation-equivalent 
subgroup. 

* This paper is based on work carried out at the Institute of 
Crystallography, Moscow, under the auspices of the exchange 
program between the Academy of Sciences of the USSR and the 
National Academy of Sciences of the USA. It was presented to the 
Symposium on Mathematical Crystallography, Riederalp, 
Switzerland, in August 1979, held in honor of Professor Werner 
Nowacki. 

Following Hermann, attention has been focused on 
finding sequences of maximal subgroups. Recently, 
however, it has been shown that several contemporary 
problems require instead a direct knowledge of the 
subgroups of a given (finite) index. Thus Billiet (1977, 
1978) has pointed out the usefulness of a direct approach 
for understanding phase transitions, and this has also 
been shown to be effective in the theory of color sym- 
metry, in which the k-color groups associated with a 
given space group are determined by its subgroups of 
index k (van der Waerden & Burckhardt, 1961; 
Senechal, 1979). 

In this paper we present a simple method for finding 
all the subgroups of any finite index of any n- 
dimensional space group. It is well known (Zassenhaus, 
1948; Burckhardt, 1966) that the space groups 
themselves are determined by the vector solutions of a 
set of lattice congruences called Frobenius congruences 
or characteristic congruences. We show that their 
subgroups are also determined by a set of congruences, 
which are completely analogous to the Frobenius 
congruences in form and in meaning. Thus, in principle, 
the subgroups can be determined in a simple way. The 
congruences can be solved in any dimension in which 
the space groups themselves are known. And since the 
solutions of the 'Frobenius subgroup congruences' are 
vectors with integer coordinates, in many cases they 
can quickly be found 'by hand' using the theory of 
linear congruences of elementary number theory. 

For brevity it is assumed that the reader is familiar 
with elementary number theory, linear algebra and 
group theory, and with the space groups in two and 
three dimensions. 

056%7394/80/060845-06501.00 © 1980 International Union of Crystallography 
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This paper is dedicated to Professor Werner 
Nowacki in recognition of his fundamental 
contributions to mathematical crystallography. 

The space groups 

In this section we briefly review the principal features of 
the space groups which are needed in the following, and 
the derivation of the Frobenius congruences. 

A space group G (of any dimension n) has a 
maximal normal Abelian subgroup T, the elements of 
which we identify with n-dimensional translation 
vectors t with integer coordinates. Further, the factor 
group G / T  is isomorphic to a finite group S of 
isometries of n-dimensional Euclidean space E n. Each 
of these isometries maps the lattice defined by T onto 
itself, and thus can be identified with an automorphism 
of T. 

In order to derive the space groups G which have a 
given point group S, we must define multiplication in G 
so as to ensure that G / T  will be isomorphic to S. Thus, 
expressing G as a union of cosets of T, 

G = T U Ts2 U Ts3 U . . . U TSm, gt *---" st E S '  

i = 1 . . . .  , m, Sl = 1, 

we must have closure under coset multiplication: 

(1) 

Tg t T g j =  T~ t (2) 

if, in S, sts  j = s t. Since T,dtTg j = T ( g t T j i l ) ~ j ,  (2) 
requires that 

(i) ~ l T g F ~ =  T 
and (ii) TgtJ j = Tg t. 

Thus, to construct the space groups we must specify 
their characterizing features: 

(i ')  an isomorphism ~0 from S onto a subgroup of the 
group Aut (T)  of automorphisms of T, 
and a set of m 2 translations t~ E T, one for each 
ordered pair i, j ,  1 <_ i, j _< m, such that 

(ii ') g tg j=  t~g t. 
The implementation of this program is based on the 
theory of group extensions (Hall, 1959; Ascher & 
Janner, 1965). However, for the purposes of this paper 
it is sufficient to note that Aut (T)  is isomorphic to the 
group G L ( n , Z )  of all n x n  matrices with integer 
coefficients and determinant + 1; ~0(S) will be a finite 
subgroup of this group. 

Defining two subgroups of Aut (T)  to be equivalent if 
they are conjugate, we find that the same geometric 
point group S may have two or more inequivalent 
representations in G L ( n , Z ) .  The corresponding space 
groups are then said to belong to different arithmetic 
crystal classes. Groups which belong to the same 
arithmetic class are distinguished from one another by 
their sets of translations t~, called the factor sets of the 
groups. (Distinct factor sets may define the same 
group: a space group is actually a class of groups 

which are conjugate under affine transformations. We 
assume here that a representative factor set for each 
class is given.) The symmorphic groups are those in 
which t~ is the zero vector for every i , j;  non- 
symmorphic groups have at least one nontrivial t~. 

For example, the space groups P4 and 14 have the 
same point group, the cyclic group of order 4, S = 
{1,s,s 2,s 3}. However, they belong to different 
arithmetic classes. For P4,  ~0(S) is generated by the 
matrix (010/100/001)  while for 14 it is generated by the 
inequivalent matrix (00 [ /111/0  [0). On the other hand, 
the space groups P4  and P4 l, which belong to the same 
arithmetic class, have different factor sets; in the latter 
group, if i + j  >_ 4, gigj = t*gl+jtmod 4), where t* = (0,0,1). 

A different but equivalent approach to the 
construction of the space groups is the following. 

Each coset representative st in (1) can be identified 
with an isometry of E n, which is, in general, a 
combination of a point symmetry operation and a 
translation. Thus st can be written in the form (xt, Sk), 
where s I = ~0(st) and xt is a vector which need not have 
integer coordinates. In this formulation, using additive 
notation for vector sums, the law of coset multiplication 
(2) becomes 

T(xt,  si) T('[ j ,  sj) -~- T(x I +s tx  j, s#j) = T('ct, sl). 

This means that xi + s t ¢j = ~t + t~], for some t~ E T, or 

x t + stx j -  x t=  t~. (3) 

[This expression for t~ is equivalent to that in (ii').] We 
can rewrite this equation in the form 

"[t + Sl'~j ~ Xl (mod T). (4) 

The congruences (4) are known as Frobenius, or 
characteristic, congruences; each space group is 
completely characterized (up to affine equivalence) by 
the solution set {x} and by the isomorphism ~p. 

If S has w generators u~,u 2, . . . ,  u w which satisfy r 
defining relations R t ( u  ~, u 2, . . . ,  Uw) = 1, i = 1, . . . ,  r, 
then the Frobenius congruences imply the r 
congruences 

Rt( /~ l , /~2 , ' '  ",/~w) = 0 (mod T) (5) 

and conversely. Since, in general, r < m 2, it is often 
convenient to use (5) instead of (4). 

The congruences (4) and (5) were used by Zassen- 
haus and Burckhardt as the basis for algorithms for 
constructing the space groups. An interesting geometric 
interpretation of Zassenhaus's theorem was given by 
Galiulin (1969), who carried out the Zassenhaus 
algorithm for n = 3. (See also Brown, 1969.) Recently, 
the characterization and enumeration of the four- 
dimensional space groups were completed by Brown, 
Billow, Neubfiser, Wondratschek & Zassenhaus 
(1978). 



M A R J O R I E  S E N E C H A L  847 

S u b g r o u p s  

The following version of Hermann's  theorem can be 
established without difficulty (see Senechal, 1979). 

T h e o r e m  1 

Let G be an n-dimensional space group with 
arithmetic class S and translation subgroup T. If H is a 
subgroup of G of finite index k, then 

(i) T '  = H fl T is a maximal Abelian normal 
subgroup of H, 

(ii) H / T '  is isomorphic to a subgroup S '  of S, and 
thus H can be written as a union of cosets of T ' :  

H=UT'sl, s l ~ s l ~ S ' ,  
1 

and 
(iii) the index of H in G is given by the formula 

k =  [G :H]  = [S : S ' ] [ T : T ' ]  = /zA. 

If A = 1, H is a translation-equivalent subgroup of G; if 
= 1, H is a class-equivalent subgroup. 
Thus, in order to find the subgroups of index k of G, 

we must know the subgroups S '  of S of index/z, for 
each divisor /z of k. Our task is then to find the 
class-equivalent subgroups of the translation-equivalent 
subgroup with arithmetic class S ' .  To do this, we look 
for subgroups T '  of index k//a = A and coset 
representatives s~ E G such that the cosets T's~ form a 
group isomorphic to S '  

Since T '  will be a subgroup of T, we can write 

T =  T '  O T ' t2  [3 . . .  T ' t  a. 

Then we have, from (1), 

G = U U T' t i s j .  (6) 
! J 

This tells us that the coset representatives s '  have the 
form s' = tg', or, in the alternative notation, (t + x',s'). 

It is easy to show that if the union of a subset of the 
cosets of T '  in (6) is a subgroup H with H / T '  = S ' ,  
then any two elements of the form t~k and t2.~ must 
belong to the same coset of T' .  Thus we can index the 
cosets T '  ttg' ~, i = 1 . . . .  , m /a ,  where, as before, m is the 
number of elements in S. 

The set of cosets must be closed under multiplication 
and so, when s~sft = s~ in S ', we have 

t - ?  ! - p  ( T  t i s i ) ( T  t f l j ) =  T ' t t j  ~. 

In order for this equality to hold, we must have, in 
analogy with (i) and (ii) of (2), 

(iii) ~T'g~-~ = T ' ,  
l - P  - I  

(iv) T ( t l s t t j s ) ) =  T'(t lS~).  
Thus each ~p(s[) must be an automorphism of T' .  
Further, writing each tg' in the form (t + r ' ,  s '),  (iv) 

becomes 

T ' ( t  I + Z'[, s~)(tj + z'~, s~) 

= T ' ( t  i + *:~ + s~tj + s~'~, s~s~) 

= T ' ( t  I + r~, s~), 

which implies that 

t I + ~'~ + s ~ t / +  s~t~ = t I + z ~ ( m o d  T ' )  

o r  

(r~ + s [~ ' j -  r~) + t I + s~tj-- t/(mod T'). 

Since, by (3), the expression in parentheses is equal to 
~ ' ,  we obtain the subgroup analogue of (3), 

t*' + t t + s~ tj --- tt(mod T'). (7) U 

If any of the vectors t in (7) is replaced by t + t', t ' E 
T' ,  the congruence is unchanged. Thus two vectors 
whose difference lies in T '  define the same subgroup; a 
solution of (7) is understood to be a solution modulo 
T' .  Since any vector outside (or on a face) of a 
primitive cell of the sublattice of T'  is congruent 
modulo T '  to a vector inside or on the opposite face of 
the cell, and since there are A lattice points per cell, the 
number of possibilities for t does not exceed A. 

Since G is a known space group, the vectors t~ and 
the operations s t are known. Thus the subgroups of G 
with H / T '  = S '  are determined by the vector solutions 
t i, t j ,  t I. 

T h e o r e m  2. The  Froben ius  subgroup  theorem 

Let G = U m t=~T(rl, s t) be a space group with point 
group S of order m, arithmetic crystal class tp(S), 
translation subgroup T and factor set {t~}. Each 
subgroup H of finite index k of G is determined by a 
pair of subgroups T '  _ T and S '  _ S, where 
IS :S '  ] [ T : T ' ]  = k =/zA. Further, 

m~ T ' ( t  I + x~, s~), n = l =  

where t i C T and, for s~ E S ', 

sl-- ,(sl). 
S '  and T '  are constrained by the conditions 

(i) ~p(S') c Aut (T ' ) ,  
and 

(ii) t~' + t t + s~ tj - ti(mod T')  
when s~sfi -- s~ in S '  

We note that these congruences can be replaced by 
an equivalent set involving the generators of S ' ,  
analogous to (5). 

E x a m p l e s  

In order to find all the subgroups of index k of a given 
space group G, we consider all possible products/zA = 



848 C H A R A C T E R I Z A T I O N  OF THE SUBGROUPS OF SPACE GROUPS 

k, and follow the steps implicit in the preceding 
discussion: 

(1) find all subgroups S '  o f S  o f i ndexg ;  
(2) for each subgroup S ', find all subgroups T' of T 

of index A which are invariant under the operations 
~0(s'); 

(3) solve the congruences (7) or an equivalent set. 
The solutions will be sets of vectors with integer 
coordinates. 

Step 1 is straightforward in those dimensions in 
which the space groups are known. To carry out step 2, 
we observe that each sublattice of the lattice defined by 
T is generated by a set of n basis vectors a~, a 2, . . . ,  a. 
with integer coordinates. These n vectors form the 
columns of a matrix A = [at/] with integer entries; 
[ T : T ' ]  = A = detA. (Square brackets are used to 
emphasize the fact that in this context A is not intended 
to be a linear transformation.) A different choice of 
basis would result in a different matrix B, which is 
related to A by the equation B -- AX,  where X is an 
n × n matrix with integer entries and determinant + 1, i.e. 
an element of GL(n ,Z) .  (The product A X  is formed by 
ordinary matrix multiplication.) In view of this, we see 
that T'  is invariant under the motions ~0(s'), s' E S ' ,  if 
for each s ' ,  tp(s') maps A onto itself or onto another 
basis for T',  that is, if there exists an X such that s'A = 
AX.  This equation places arithmetic constraints on the 
coordinates of the vectors ai, which thus define a finite 
set of possible forms for the matrix A. (The distinct 
forms of the set are rationally equivalent; that is, they 
are conjugate in the group of all matrices with rational 
entries.) It should be noted that since the forms of the 
matrices are completely determined by the motions 
~o(s'), this set is the same for all groups belonging to the 

same arithmetic crystal class. [In this paper we will not 
derive these forms; for details see Harker (1978) and 
Senechal (1979).] Finally, to complete step 3, we solve 
the appropriate vector congruences. If there is more 
than one form for the matrix A, each must be 
considered separately. 

We illustrate these steps by characterizing the 
subgroups of finite index k of the plane group p4 and 
the three-dimensional space groups P 4  and P 4  r 

Step 1. For all three groups, S is cyclic of order 4, 
generated by a single element s satisfying the relation s 4 
= 1. The subgroups S '  of S are S~ = {1}, S 2 = {1,s z} 
and S 3 = S = {l,s,s2,s 3 }. Thus these groups can have 
subgroups of indices k = 4A, k = 2A, and k = A; the 
possible values of A are discussed below. 

Step 2. If S '  = S~ then the subgroup H is simply T'  
itself. Since ~0(S') contains only the identity auto- 
morphism, any matrix A with det A = k /4  is admissible. 
Thus for p4 the matrix form is the general [pq/st] and 
for P4 and P41, its 3 × 3 analogue. 

If S '  = S 2, the lattices must be invariant under a 
twofold rotation. Every planar lattice satisfies this 
requirement, so for p4 the matrix A has the general 
form above. For P4 and P4~, we have (Harker, 1978) 
two forms corresponding to the monoclinic primitive 
lattice, MP, [pqO/stO/OOrl, and to the monoclinic 
centered lattice, MC,  [pqr/f~?lr/stO ]. 

If S '  = S a = S, then the lattices must be invariant 
under a fourfold rotation. In this case the matrix for the 
plane lattice can be written in the form [pq/@], with 
A = p2 + q2. The three-dimensional tetragonal lattices 
can be primitive, SP, [pqO/b,.pO/OOr] or centered, 
SI ,  [pqr/glpr/f~(trl. Their determinants are r (p  2 + qZ) 
and 2r(p z + q'), respectively. 

Table 1. The subgroups o f  P4 and P4~ 

If G is one of the space groups P4 and P41, then G/T is isomorphic to a cyclic group S of order 4, and the group of automorphisms ~p (S) is 
generated by the transformation s = (010/100/001). The subgroups of G are determined by the subgroups S' _ S, the appropriate 
sublattices T' c_ 7", and the corresponding vector congruences. The solutions are elements of T, that is, they are vectors with integer 
coordinates. (Thus, in columns 4 and 5 it is understood that the stated solution exists only when r is divisible as indicated.) 

P4 
Generator Congruence Solutions Subgroup 
of tp (S') (mod T') Matrix for T' t type 

13 - [ pqr/stu/v wO] (x,y,z) P 1 

(io0/oio/o01) t* + t + s2t = 0 [pqO/stO/OOr] (x,y,O) P2 
(x,y,r/2) P2 I 

[pqr/~?lr/stO] (x,y,O) C2 
(x,y,r) C2 

3 

(OlO/iO0/O01) t* + U sq= 0 [pqO/b.pO/OOr] (x,y,O) P4 
t. o (x,y,r/2) P42 

(x,y,r/4) P4 l 
(x,y,3r/4) P43 

[pqr/b.pr/p?lrl (x,y,O) 14 
(x,y,r) I4 
(x,y,r/2) 141 
(x,y,3r/2) I41 

P4 l 
Solutions Subgroup 

t type 

(x,y,z) P1 

[x,y, ( r -  1)/2] P21 

[x,y, ( r -  1)/4] P4, 
[x,y, (3 r -  1)/4] P43 
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Step 3. Whenever  S '  is the identity subgroup S, ,  (7) 
is satisfied trivially. Each lattice of  determinant  k/4 
defines a subgroup of  T of  index k. For  example,  if k = 
20, p4 has exactly six subgroups  of  this type, described 
by the matrices [50/./'1 ] , j  = 0 , . . . ,  4 and [10/05].  

W h e n  S '  = S 2, H = T '  U T ' t s  2 fo r  s o m e  t E T. T h e  
subgroup S 2 has two elements so there will be four 
congruences  (7). However ,  since three of  them involve 
the identity au tomorphism,  only the one in which both 
st and sj are equal to S 2 needs to be solved: 

t* + t + sEt = 0 ( m o d  T ' ) .  (8)  

When G = p4,  s 2 = - 1 2  and t* = (0,0). Thus (8) is 
satisfied by any t ~ T. When G = P4 ,  then again the 
subgroups  with S '  = S 2 are determined by the 
solutions of  the congruence (8), where T '  is given by 
one of  the lattices MP or MC, t* = (0, 0, 0) and (p(s 2) = 
( i 0 0 / 0  i0 /001) .  Writing t = (x,y,z), (8) becomes 

(x,y, z) + (--x, --y, z) --= (0, 0, 0) (mod T ' ) .  

This means  that  the vector (0, 0, 2z) must  be an integral 
multiple of  the shortest  vector in T '  in the direction 
[0, 0, 1 ]. In the MP lattice, this vector is (0, 0, r); in the 
MC lattice it is (0, 0, 2r). Thus to find the solutions t we 
must  solve the ari thmetic congruences  2z = 0 (mod  r) 
and 2z = 0 (mod  2r), respectively. The first congruence 
a lways  has the solution z = 0; thus any vector (x,y,O) 
is a solution of  (8). The subgroups  they determine are 
of  type P2 .  If  r is even [21r], then there is the additional 
solution z = r/2; thus (8) is satisfied by all vectors of  
the form t = (x,y,r/2). These subgroups  are of  type 
P2 , .  The second congruence a lways  has two solutions, 
z = 0 and z = r; both determine subgroups  of  type C 2. 
When G = P4, ,  (8) becomes 

(0, 0, 1) + (0, 0, 2z) -- (0, 0, 0) (mod T ' )  

which reduces to the two congruences  2 z +  1 =- 
0 (mod  r) and 2z + 1 = 0 (mod  2r), according as T '  has 
an MP or MC lattice. The first congruence has no 
solution for even values of  r. For  odd r [ 2 1 ( r - 1 ) ] ,  
there is the unique solution z = ( r - 1 ) / 2 ;  the 
corresponding subgroups  are of  type P 2  r The second 
congruence has no solutions for any r. 

Finally, when S '  = S 3 = S, then H = U~=l(T'ts)L-l; 
in this case it is convenient  to replace the congruences  
(7) by the single congruence  determined by the relation 
(T'/ .~)4 = T ' :  

t* + t + st + s2t + sat = 0 ( m o d  T').  (9) 

When G = p4,  there are no subgroups  unless A is an 
integer which can be written as a sum of two squares.  
(The number  of  lattices is a function of  the number  of  
ways  in which this can be done.) Since t* = (0,0)  and 
the group ~p(S) is generated by (01 / [0) ,  (9) becomes 

(x,y) + ( - -y ,x)  + (--x,--y) + (y , - -x)  -- (O,O)(mod T') ,  

where (x,y) = t. This congruence is satisfied by all 

vectors t. The subgroups  of  this type of  index 5 are 
illustrated in Fig. 1. When G = P4, (9) becomes 

(x,y,z) + ( -y , x , z )  + ( - x , - y , z )  + ( y , - x , z )  

= (0, 0, 0) (mod T') .  

For  the SP lattice, this reduces to 4z = 0 (mod  r). This 
congruence a lways  has the solution z = 0, so t = 

(1,2) 
o o  o o  ~ o  o o  o o  o o  ° o  o o  
oo  ~ o ~  oo  oo oo  , ,  oo  

( o , o ) / ( o ,  ~) (o, 2)\ 
~ - - - ~ o  o o , ,  oo  ,, oo  oo  oo  
~ oo o o \ o o  ,, oo  oo  oo  

( 1.'O)\ (l,l) (1.2) \ 
~o\ oo oo ~o oo oo oo mm 
oo \oo ~ o o  oo oo oo ee 

O0 (-T~I~ 0 0 ~  O0 O0 @@ O0 O0 
O0 O0 O0 O0 O0 @@ O0 O0 

(a) (b) 

O0 O0 O0  O0  O0 O0  O0 O0  
O0  O0 O0 O0  O0 O0 O0  O0  

O0  O0 O0  O0  O0 O0  O0  O0  
O0 O0 O0 O0 O0 O0 O0 O0 

O0 O0 O0  O0  O0 O0  O0  O0  
O0 O0 O0 O0 O0 O0 O0 O0 

O0 O0 O0 O0 O0 O0 O0 O0 
O0 O0 O0 O0 O0 O0 O0 O0 

(~ (d) 

O0 O0 O0  O0 O0 O0 O0  O0  
O0  O0  O0  O0 O0 O0  O0  O0 

O0 O0 O0 O0  O0 O0  O0  O0  
O0 eO O0 O0  O0 O0  O0  O0  

O0 O0 O0 O0 O0 O0 O0 O0 
O0 O0 O0 O0 O0 O0 O0 O0 

O0 O0 O0 O0 O0 O0 O0 O0 
O0 O0 O0 O0 O0 O0 O0 O0 

(e) ( f )  

Fig. 1. The subgroups of index 5 of the plane group p4 with 
sublattice [21/121, represented by their orbits. (An orbit for a 
group of motions is the set of points generated from an arbitrary 
point by those motions.) (a) An orbit (with points in general 
position) for the plane group p4. The initial point is (0,0); the 
center of the rotation s is marked by a +. A subgroup of p4 of 
index k with/J = 1, A = k is also type p4; the sublattice matrix 
must have the form [pq_/itpl. If k = 5, there are two possible 
lattices, I21/121 and [21/12]. A primitive cell of the sublattice 
defined by the first of these is shown. (b) A subgroup of t94 
corresponds to each distinct solution of the congruence U~=0stt =- 
0(rood T'). If T' is defined by the matrix [21/i2] then the vector 
t = (0, 0) and the vectors lying inside the primitive cell are the five 
distinct solutions. The orbit of the subgroup defined by the 
solution t = (0, 0) is indicated by filled circles. (c)-(f) The orbits 
of the subgroups defined by the solutions t = (1,1), t = (1,2), t = 
(0, 1) and t = (0,2), respectively. In each case the starting point 
of the orbit is the point (0,0) of (a). Computer drawing 
programmed by Lynn Goodhue. 
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(x,y,0) is always a solution of (9). The corresponding 
subgroups are of type P4. If 21 r, then z = r/2 is also a 
solution and the corresponding vector solutions of (9), 
t = (x,y,r/2), determine P42 subgroups. Finally, if 4 I r, 
there are P4t  subgroups corresponding to the solution 
z = r/4 and P43 subgroups corresponding to the solution 
z = 3r/4. For the SI  lattice the congruence reduces to 
4z - 0 (mod 2r). There are always the solutions z = 0 
and z = r, to which correspond subgroups of type 14. If 
21r then there are also 141 subgroups corresponding to 
the additional solutions z = r/2 and z = 3r/2. When G 
= P41, (9) becomes 

(0,0, 1) + (0,0,4z) - (0, 0, 0)(mod T'),  

which reduces to 4z + 1 =- 0 (mod r) and 4z + 1 = 0 
(mod 2r). The second has no solutions. The first has no 
solutions if 21r, and has the unique solution z = 
( r -  1)/4 if 4 I ( r -  1) and z = ( 3 r -  1)/4 if 41 ( r -  3). The 
subgroup is P41 in the first case and P43 in the second. 
The defining characteristics of the subgroups of P4 and 
P41 are listed in Table 1. 

Concluding remarks 

In many problems we need to be able to classify the 
subgroups of a space group G; the definition of 
equivalence depends upon the problem at hand. Most 
generally, two subgroups are equivalent if one can be 
mapped onto the other by an automorphism of G. 
However, in some problems we may need to distinguish 
further between sense-preserving and sense-reversing 
automorphisms, or between inner and outer auto- 
morphisms. The equivalence problem will not be 
discussed here; for detailed discussions we refer the 
reader to Opechowski (1980) and Senechal (1979). 

The characterization of the subgroups presented in 
this paper complements other recent work in this field. 
K6hler (1980a,b,c) discusses both the periodic 
crystallographic groups (i.e. n-dimensional space 
groups and crystallographic point groups) and sub- 
periodic groups (groups in which the translation 
subgroup has lower dimension than the group) from a 
unified abstract point of view. A generalization of 
Zassenhaus's algorithm is used to construct these 
groups and to characterize their subgroups. For the 
periodic groups his results are in accordance with ours. 
In several papers, Billiet and his colleagues have 

discussed the problem of determining whether one 
space group g can be a subgroup of another G (e.g. 
Billiet, Sayari & Zarrouk, 1978). They show that it is 
necessary that the point group of g be a subgroup of the 
point group of G, and that it must be possible to 
identify an orbit of g (see the caption to Fig. 1) as a 
suborbit of an orbit of G. In our terminology, this 
means that S '  ~_ S and T'  must be a sublattice of T 
invariant under the automorphisms ~0(S'); thus their 
approach to subgroups is also closely related to that 
presented here. Recently, Bertaut & Billiet (1979)have 
shown that the fact that the subgroups which are 
isomorphic to G are also affine conjugate to it can be 
used in their determination. 

It is a pleasure to thank Dr R. V. Galiulin of the 
Institute of Crystallography, Moscow, for many 
stimulating and helpful discussions. 
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